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point patterns



Point patterns

A ’spatial point pattern’ is a dataset giving the observed spatial locations of
things or events. For instance locations of:

∙ Trees in a forest,
∙ Stars in a star cluster,
∙ Road accidents,
∙ Earthquake epicentres,
∙ Mobile phone calls,
∙ Animal sightings,
∙ Nuclei in a microscopic section of tissue,
∙ Rare disease,
∙ Crime,
∙ Gold deposits mapped in a geological survey.
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Point patterns

R> library(spatstat)
R> plot(cells,pch=20,cex=2,main=””)
R> plot(redwood,pch=20,cex=2,main=””)

Figure: Left: Biological cells observed under optical microscopy in a histological
section. Right: Locations of 62 seedlings and saplings of California redwood trees.
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Point patterns

R> plot(ants,cex=2,main=””,lwd=2)
R> plot(chicago,cex=2,main=””,col=2,lwd=2)
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Figure: Left: Spatial locations of nests of two species of ants. Right: Spatial locations
of crimes reported in the period 25 April to 8 May 2002, in an area of Chicago (Illinois,
USA)
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Point patterns

R> plot(longleaf,main=””,cols=”gold”,lwd=2)
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Figure: Locations and sizes of Longleaf pine trees. A marked point pattern 6



Note

∙ ‘Point data’ cannot necessarily be treated as a ‘point pattern’. For
example, measurements of soil acidity at a series of sampling locations in
a field would not normally be treated as a point pattern: the sampling
locations are artificial, and irrelevant to the study of soil acidity.

∙ Statistical analysis of the spatial arrangement of points can reveal
important features, such as a tendency for gold deposits to be found
close to a major geological fault, or for cases of a disease to be more
prevalent near a pollution source, or for bird nests to maintain a certain
minimum separation from each other.

∙ A dataset may also include covariates, i.e. any data that we treat as
explanatory, rather than as part of the ‘response’. Type of covariates vary
from a dataset to another one. For instance, in case of studying crime
point patterns, distance from data points to some particular places might
be considered as covariates.
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Note

∙ Points may be observed in different spaces. They might happen in R2 such
as “cells” and “redwood”. Some may happen in one-dimensional space
such as “Chicago crime data”. Another type could be those recorded in
space and time such as earthquake epicentre locations and times.

∙ Working with point patterns, we assume the location of points are already
projected. If not, please project them before any analysis.

∙ When working with multi-type point patterns such as “ants”, make sure
the location of all types are projected in a same ref system.

∙ In case of point patterns on network such as “Chicago crime data”, make
sure all data point and network itself are projected using a same ref
system.

∙ Mathematically speaking, different spaces may demand their own special
attention.

∙ Other types of point patterns include replicated patterns and point
patterns on sphere.
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statistical methodology for point patterns



Methodology

Aiming at analysing a point pattern, one might be interested in:

∙ Spatially varying distribution of the points. Is there any hot-spot? How
events use space?

∙ The type of interaction between points.
∙ Is there any evidence of clustering?
∙ How is the spatially variation of marks?
∙ How covariates affect the spatially varying distribution of points?
∙ Are different types of points affected by each other?
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Methodology

A point process is a random mechanism whose outcome is a point pattern.
If the experiment could be repeated under identical conditions, the
observed point pattern would be different each time.

∙ Important note: If the researcher concludes that “the points are
completely random” or “the points are uniformly spread”, this cannot be a
literal description of the point pattern dataset. Data are numbers that
were observed and recorded: they are fixed, not random. A point in a
point pattern is a discrete object, and cannot be ‘spread uniformly’ like
butter. Instead, the conclusion is that the data points were generated by
some mechanism which was completely random, or which spread the
points uniformly, etc.
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Methodology

We assume x = {x1, x2, . . . , xn} as a point pattern generated by a point
process X. The number n of points in the pattern is not fixed in advance, and
may be any finite nonnegative number including zero.

A ‘completely random’ point process is characterised by two key properties:

Homogeneity: the points have no preference for any spatial location;

Independence: information about the outcome in one region of space has
no influence on the outcome in other regions.

It is a realistic model of some physical phenomena, such as radioactivity,
rare events, and extreme events. It serves as a benchmark or standard
reference model of completely random patterns, against which other
patterns can be compared.
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Methodology

A point process X is usually labeled by an intensity function λ which governs
the spatially varying distribution of points so that,

E[N(X ∩ A)] =
∫
A
λ(u)du, (1)

where N is a count function.

Poisson process: X is a Poisson process with intensity function λ > 0 on R2if

∙ For any B ⊂ R2, the number of points of X in B is Poisson distributed with
parameter

∫
B λ(u)du.

∙ The number of points in B1,B2, . . . ,Bm ⊂ R2 are independent random
variables.
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Intensity estimation

In order to understand the spatially varying distribution of the points, the
key point is to estimate the intensity function λ.

Kernel smoothing:

Simple explanation: place one square of chocolate on each data point.
Using a hair dryer we apply heat to the chocolate so that it melts slightly.
The result is an undulating surface of chocolate; the height of the surface
represents the estimated intensity function of the point process. The total
mass of chocolate is unchanged.
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Intensity estimation

Mathematically speaking:

Consider a point pattern x observed in window W ⊂ R2. The usual kernel
estimators of the intensity function are, with uniform correction,

λ̂U(u) =
n∑
i=1

κσ(u− xi)
CW,σ(u)

, u ∈ W, (2)

and with Jones-Diggle correction,

λ̂JD(u) =
n∑
i=1

κσ(u− xi)
CW,σ(xi)

, u ∈ W, (3)

where σ is the smoothing bandwidth parameter, κ is a kernel density
function and

CW,σ(u) =
∫
W
κσ(u− v)dv, v ∈ W. (4)
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Intensity estimation

Properties:

∙ Intensity estimate (2) is unbiased if the true intensity is constant, i.e.
E[λ̂U(u)] = λ.

∙ Intensity estimate (3) provides mass conservation, i.e.
∫
W λ̂JD(u) = n

Note: Smoothing parameter σ plays an important role in estimating
intensity function using kernel smoothing.

Note: Estimators (2) and (3) are implemented in function ‘density.ppp’ in R
package ‘spatstat’.
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Bandwidth selection

∙ Likelihood cross-validation: Maximising
n∑
i=1

log(λ̂−i(xi))−
∫
W
λ̂(u)du, (5)

where λ̂−i is the corresponding “leave-one-out” at xi, defined by omitting
the contribution from xi from the sum in (2) or (3) accordingly. This is
implemented in ‘spatstat’ by function ‘bw.ppl’.

∙ Scott’s rule of thumb for 2 dimension:

σx = (4n)−1/6sx, σy = (4n)−1/6sy, (6)

where ‘s’ is the sample standard deviation of the Cartesian coordinate
values for the data locations. This is implemented in ‘spatstat’ by function
‘bw.scott’.
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Application

# redwood
R> d <- density.ppp(redwood,sigma = bw.ppl(redwood))
R> plot(d,main=””,ribwid=0.04,ribsep=0.02)
R> plot(redwood,pch=20,cex=2,add=T)
# ants
R> d1 <- density.ppp(ants,sigma = bw.scott(ants))
R> plot(d1,main=””,ribwid=0.04,ribsep=0.02)
R> plot(ants,cex=2,add=T,lwd=2)
# chicago
R> d2 <- density.lpp(chicago,sigma = 100)
R> plot(d2,main=””,ribwid=0.04,ribsep=0.02)
R> plot(chicago,pch=20,add=T,cex=1.4)
R> plot(d2,style = ”w”,main=””,adjust = 1.3)
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Application
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Figure: Left: Estimated intensity for ants data. Right: Estimated intensity for Redwood
data.
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Application

Note: Intensity estimation for point patterns on networks are different than
estimates (2) and (3), however it has the same interpretation adapted to the
network. We do not discuss that here.
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Figure: Estimated intensity for chicago crime data. 20



Application

0.005

0.01

0.015

Figure: Estimated intensity for chicago crime data. 21



Weighted kernel estimates

Uniform correction,

λ̂U(u) =
n∑
i=1

wi
κσ(u− xi)
CW,σ(u)

, u ∈ W, (7)

and with Jones-Diggle correction,

λ̂JD(u) =
n∑
i=1

wi
κσ(u− xi)
CW,σ(xi)

, u ∈ W. (8)

# Applying (7) to ‘longleaf’ data.

R> d4 <- density(longleaf,sigma = bw.ppl(longleaf),weights =marks(longleaf))
R> plot(d4,main = ””,ribwid=0.04,ribsep=0.02)
R> plot(longleaf,add=T)
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Weighted kernel estimates

The diameter-weighted intensity is the average total diameter of trees per
unit area of forest.
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Figure: Weighted estimated intensity for longleaf data. Weights are diameter of trees.
23



More examples to describe weighted kernel estimate

∙ There are cases where each data point represents one or more events
that occurred at the same spatial location, such as multiple disease cases
at the same residence. It is then appropriate to weight each residential
location by the number of cases, so that the intensity would be the
average total number of cases per unit area, not the number of affected
residences per unit area.

∙ If weight is the number of vehicles involved in the traffic accident that
occurred at locations, then the weighted intensity estimate is the
spatially-varying number of vehicles involved in accidents per unit length.
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Relative risk

In spatial relative risk estimation, data points are classified into different
types, and we seek to estimate the spatially-varying relative frequency of
each type of point.

For simplicity, assume there are only two types of points, and we observe
two point patterns x; y containing the points of the first and second types
respectively, on the same window W. The goal is to estimate the logarithmic
relative risk

ρ(u) = logλX(u)
λY(u)

, u ∈ W, (9)

where λX and λY are the intensity functions of the underlying point
processes X; Y of points of each type.
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Application of relative risk

Note: It is recommended to use a common bandwidth to estimate
numerator and denominator in (9). See R package ‘sparr’.

R> library(spatstat)
R> library(sparr)
R> antstypes <- split(ants)
R> cmbw <- LSCV.risk(antstypes$Cataglyphis,antstypes$Messor,method =
”hazelton”)
R> dCataglyphis <- density.ppp(antstypes$Cataglyphis,sigma = cmbw)
R> dMessor <- density.ppp(antstypes$Messor,sigma = cmbw)
R> plot(dMessor/dCataglyphis,main = ””,ribwid=0.04,ribsep=0.02)
R> npoints(antstypes$Messor)/npoints(antstypes$Cataglyphis)
R> [1] 2.344828
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Application of relative risk
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Figure: Left: Ants point pattern. Right: Estimated relative risk for the two different
types of ants using the ratio of two estimated intensities.
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K-function

A very popular technique for analysing spatial correlation in point patterns.

The inhomogeneous K-function for point processes in R2 is defined as

Kinhom(r) = E

∑
xi∈X

1{0 < ∥u− xi∥ ≤ r}
λ(xi)

∣∣∣∣∣∣u ∈ X

 . (10)

For Poisson processes in R2, Kinhom(r) = πr2 and for Poisson processes on
networks Kinhom(r) = r.

Note: K > πr2(K > r) is an indication of clustering behaviour while
K < πr2(K < r) denote inhibition between points.

Note: K-function for multi-type patters, replicated patterns, patterns on
networks, etc is different. However, it somehow keeps the same
interpretation after adaption to the new space/condition. We do not discuss
that here!

Note: There are different estimators for K-function. We do not discuss them
here.
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Application

R> d3 <- density.lpp(chicago,sigma = 100)
R> kchig <- linearKinhom(chicago,lambda = d3,normpower = 2)
R> plot(kchig,main=””)

R> kcells <- Kinhom(cells,normpower=2)
R> plot(kcells,main = ””)

R> kants <- envelope(ants,fun = Kinhom,nsim=200,normpower=2)
R> plot(kants,main = ””)

R> klong <- envelope(longleaf,Kinhom,normpower=2,nsim=200)
R> plot(klong,main=””)
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Application
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Figure: Estimated K-function for; Left: chicago data. Right: cell data.
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Application
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Figure: Estimated K-function together with simulation envelopes; Left: ants data.
Right: longleaf data.
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Pair correlation function

An alternative tool is the pair correlation function g(r) which contains
contributions only from inter-point distances equal to r.

ginhom(r) =
K
′

inhom(r)
πr2 (11)

where K
′
(r) is the derivative of the K-function with respect to r.

Simply speaking: g(r) is the probability of observing a pair of points of the
process separated by a distance r, divided by the corresponding probability
for a Poisson process.

Note: ginhom(r) > 1 indicates clustering behaviour whereas ginhom(r) < 1
shows inhibition.
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Application

R> gchig <- linearpcfinhom(chicago,lambda = d3,normpower = 2)
R> plot(gchig,main=””)

R> gcells <- pcfinhom(cells,normpower=2)
R> plot(gcells,main=””)

R> gants <- envelope(ants,pcfinhom,nsim=200,normpower=2)
R> plot(gants,main=””)

R> glong <- envelope(longleaf,pcfinhom,nsim=200,normpower=2)
R> plot(glong,main=””)
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Application
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Figure: Estimated g-function; Left: chicago data. Right: cells data.
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Application
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Figure: Estimated g-function together with simulation envelopes; Left: ants data.
Right: longleaf data.
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more to know



What we did not discuss...

∙ Estimating intensity function parametrically.
∙ Adaptive estimators.
∙ Adaptive smoothing.
∙ Other bandwidth selectors.
∙ Space-time point processes.
∙ Marked space-time point processes.
∙ Higher-order summary statistics.
∙ Details of point processes on linear networks.
∙ Point processes on sphere.
∙ Replicated point patterns.
∙ And many other things ;)

Note: For more details, see Diggle (2013) and Baddeley, et al (2015).
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